Thursday, July 17, 2014

BestOnline Training For HADOOP BIG DATA

SR TECHNOLOGIES
#101, Santhinilaya, Behind HUDA Maitrivanam
                 PH:  +91-9676126684
HADOOP Development & Admin Course

Hadoop Introduction:-

  • What is Hadoop? Why Hadoop?
  • Hadoop History?
  • Different types of Components in Hadoop?
ð  HDFS, MapReduce, PIG, Hive, SQOOP, HBASE, OOZIE, Flume, Zookeeper and so on…
  • What is the scope of Hadoop?

Hadoop Distributed File System (HDFS) (for Storing the Data):-

ð  Introduction of HDFS
ð  Features of HDFS
ð  Daemons of Hadoop
  • Name Node
  • Secondary Name Node
  • Job Tracker
  • Data Node
  • Task Tracker
ð  Basic Configuration for HDFS
ð  Data Organization and Replication
ð  Rack Awareness, Heartbeat Signal
ð  How to Store the Data into HDFS
ð  Accessing HDFS (Introduction of Basic UNIX commands)
ð  CLI commands

MapReduce using Java (Processing the Data):-

ð  Introduction of MapReduce.
ð  MapReduce Architecture
ð  Data flow in MapReduce
  • Splits
  • Mapper
  • Portioning
  • Sort and shuffle
  • Combiner
  • Reducer
ð  Basic Configuration of MapReduce
ð  MapReduce life cycle
ð  Writing and Executing the Basic MapReduce Program using Java
ð  File Input Formats
ð  Joins
  • Map-side Joins
  • Reducer-side Joins

PIG:-

ð  Introduction to Apache PIG
ð  MapReduce vs PIG
ð  Basic PIG programming
ð  Modes of Execution in PIG
  • Local Mode and
  • MapReduce Mode
ð  Execution Mechanisms
  • Grunt Shell
  • Script
  • Embedded
ð  Operators in PIG
ð  PIG UDF’s

SQOOP:-

ð  Introduction to SQOOP
ð  Connect to mySql database
ð  SQOOP commands
  • Import
  • Export
  • Eval
  • Codegen and etc…
ð  Joins in SQOOP

HIVE:-

ð  Introduction to HIVE
ð  HIVE Architecture
ð  Tables in HIVE
  • Managed Tables
  • External Tables
ð  Partition
ð  Joins in HIVE
ð  HIVE UDF’s and UADF’s

HBASE:-

ð  Introduction to HBASE and Basic Configurations of HBASE
ð  HBASE Architecture
ð  SQL vs NOSQL
ð  How HBASE is differ from RDBMS
ð  Client side buffering or bulk uploads

Cluster Setup:--

ð  Downloading and installing the Hadoop
ð  Creating Cluster
ð  Increasing Decreasing the Cluster size
ð  Monitoring the Cluster Health
ð  Starting and Stopping the Nodes
Introduction about OOZIE, FLUME and ZOOKEEPER and some sample programs.


Topics Covered in Hadoop Developer
  • Introduction to Big Data and Hadoop
  • Hadoop ecosystem concepts
  • Hadoop MapReduce concepts and features
  • Developing MapReduce applications
  • Pig concepts
  • Hive concepts
  • Real-time queries with Impala
  • Real life use cases
Introduction to Big Data and Hadoop
  • What is Big Data?
  • What is Hadoop?
  • Why Hadoop?
  • History of Hadoop
  • Hadoop ecosystem
  • HDFS
  • MapReduce
  • Install Hadoop
  • Single Node Hadoop Setup
  • Test run Hadoop commands
  • Hands on
  • Understanding the Cluster
  • Writing files to HDFS
  • Reading files from HDFS
  • Rack awareness
  • 5 daemons
  • Deep Dive into  MapReduce
  • Before MapReduce
  • MapReduce overview
  • Architecture  MapReduce
  • Word count problem
  • Word count flow and solution
  • MapReduce flow
  • Developing the MapReduce Application
  • Data Types
  • File Formats
  • Explain the Driver, Mapper and Reducer code
  • Configuring development environment – Eclipse
  • Writing unit test
  • Running locally
  • Running on cluster
  • Hands on
Monitoring MapReduce Job Status
  • Job submission
  • Job initialization
  • Task assignment
  • Job completion
  • Job scheduling
  • Job failures
  • Shuffle and sort
  • Hands on
MapReduce Types and Formats
  • MapReduce types
  • Input Formats – Input splits records, text input, binary input, multiple inputs database input
  • Output Formats – text output, binary output, multiple outputs, lazy output and database output
  • Hands on
MapReduce Features
  • Sorting
  • Joins – Map side and reduce side
  • MapReduce combiner
  • MapReduce partitioner
  • MapReduce distributed cache
  • Hands on
Hive
  • Fundamentals
  • Concepts
  • Hands-on
Pig
  • Fundamentals
  • Concepts
  • Hands-on
Sqoop
  • Fundamentals
  • Concepts
  • Hands-on
Flume
  • Fundamentals
  • Concepts
  • Hands-on
Case Studies
  • Real time use case explanation